70 research outputs found

    Green Beamforming Design for Integrated Sensing and Communication Systems: A Practical Approach Using Beam-Matching Error Metrics

    Full text link
    In this paper, we propose a green beamforming design for the integrated sensing and communication (ISAC) system, using beam-matching error to assess radar performance. The beam-matching error metric, which considers the mean square error between the desired and designed beam patterns, provides a more practical evaluation approach. To tackle the non-convex challenge inherent in beamforming design, we apply semidefinite relaxation (SDR) to address the rank-one relaxation issue, followed by the iterative rank minimization algorithm (IRM) for rank-one recovery. The simulation results showcase the effectiveness of our proposed optimal beamforming design, emphasizing the exceptional performance of the radar component in sensing tasks

    Deep Joint Source-Channel Coding for DNA Image Storage: A Novel Approach with Enhanced Error Resilience and Biological Constraint Optimization

    Full text link
    In the current era, DeoxyriboNucleic Acid (DNA) based data storage emerges as an intriguing approach, garnering substantial academic interest and investigation. This paper introduces a novel deep joint source-channel coding (DJSCC) scheme for DNA image storage, designated as DJSCC-DNA. This paradigm distinguishes itself from conventional DNA storage techniques through three key modifications: 1) it employs advanced deep learning methodologies, employing convolutional neural networks for DNA encoding and decoding processes; 2) it seamlessly integrates DNA polymerase chain reaction (PCR) amplification into the network architecture, thereby augmenting data recovery precision; and 3) it restructures the loss function by targeting biological constraints for optimization. The performance of the proposed model is demonstrated via numerical results from specific channel testing, suggesting that it surpasses conventional deep learning methodologies in terms of peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM). Additionally, the model effectively ensures positive constraints on both homopolymer run-length and GC content

    Polar Coded Integrated Data and Energy Networking: A Deep Neural Network Assisted End-to-End Design

    Get PDF
    Wireless sensors are everywhere. To address their energy supply, we proposed an end-to-end design for polar-coded integrated data and energy networking (IDEN), where the conventional signal processing modules, such as modulation/demodulation and channel decoding, are replaced by deep neural networks (DNNs). Moreover, the input-output relationship of an energy harvester (EH) is also modelled by a DNN. By jointly optimizing both the transmitter and the receiver as an autoencoder (AE), we minimize the bit-error-rate (BER) and maximize the harvested energy of the IDEN system, while satisfying the transmit power budget constraint determined by the normalization layer in the transmitter. Our simulation results demonstrate that the DNN aided end-to-end design conceived outperforms its conventional model-based counterpart both in terms of the harvested energy and the BER

    Robust NOMA-assisted OTFS-ISAC Network Design with 3D Motion Prediction Topology

    Full text link
    This paper proposes a novel non-orthogonal multiple access (NOMA)-assisted orthogonal time-frequency space (OTFS)-integrated sensing and communication (ISAC) network, which uses unmanned aerial vehicles (UAVs) as air base stations to support multiple users. By employing ISAC, the UAV extracts position and velocity information from the user's echo signals, and non-orthogonal power allocation is conducted to achieve a superior achievable rate. A 3D motion prediction topology is used to guide the NOMA transmission for multiple users, and a robust power allocation solution is proposed under perfect and imperfect channel estimation for Maxi-min Fairness (MMF) and Maximum sum-Rate (SR) problems. Simulation results demonstrate the superiority of the proposed NOMA-assisted OTFS-ISAC system over other systems in terms of achievable rate under both perfect and imperfect channel conditions with the aid of 3D motion prediction topology

    Multi-Domain Polarization for Enhancing the Physical Layer Security of MIMO Systems

    Full text link
    A novel Physical Layer Security (PLS) framework is conceived for enhancing the security of the wireless communication systems by exploiting multi-domain polarization in Multiple-Input Multiple-Output (MIMO) systems. We design a sophisticated key generation scheme based on multi-domain polarization, and the corresponding receivers. An in-depth analysis of the system's secrecy rate is provided, demonstrating the confidentiality of our approach in the presence of eavesdroppers having strong computational capabilities. More explicitly, our simulation results and theoretical analysis corroborate the advantages of the proposed scheme in terms of its bit error rate (BER), block error rate (BLER), and maximum achievable secrecy rate. Our findings indicate that the innovative PLS framework effectively enhances the security and reliability of wireless communication systems. For instance, in a 4×44\times4 MIMO setup, the proposed PLS strategy exhibits an improvement of 22dB compared to conventional MIMO, systems at a BLER of 2⋅10−52\cdot 10^{-5} while the eavesdropper's BLER reaches 11

    Massive Wireless Energy Transfer without Channel State Information via Imperfect Intelligent Reflecting Surfaces

    Full text link
    Intelligent Reflecting Surface (IRS) utilizes low-cost, passive reflecting elements to enhance the passive beam gain, improve Wireless Energy Transfer (WET) efficiency, and enable its deployment for numerous Internet of Things (IoT) devices. However, the increasing number of IRS elements presents considerable channel estimation challenges. This is due to the lack of active Radio Frequency (RF) chains in an IRS, while pilot overhead becomes intolerable. To address this issue, we propose a Channel State Information (CSI)-free scheme that maximizes received energy in a specific direction and covers the entire space through phased beam rotation. Furthermore, we take into account the impact of an imperfect IRS and meticulously design the active precoder and IRS reflecting phase shift to mitigate its effects. Our proposed technique does not alter the existing IRS hardware architecture, allowing for easy implementation in the current system, and enabling access or removal of any Energy Receivers (ERs) without additional cost. Numerical results illustrate the efficacy of our CSI-free scheme in facilitating large-scale IRS without compromising performance due to excessive pilot overhead. Furthermore, our scheme outperforms the CSI-based counterpart in scenarios involving large-scale ERs, making it a promising solution in the era of IoT

    Detector Guidance for Multi-Object Text-to-Image Generation

    Full text link
    Diffusion models have demonstrated impressive performance in text-to-image generation. They utilize a text encoder and cross-attention blocks to infuse textual information into images at a pixel level. However, their capability to generate images with text containing multiple objects is still restricted. Previous works identify the problem of information mixing in the CLIP text encoder and introduce the T5 text encoder or incorporate strong prior knowledge to assist with the alignment. We find that mixing problems also occur on the image side and in the cross-attention blocks. The noisy images can cause different objects to appear similar, and the cross-attention blocks inject information at a pixel level, leading to leakage of global object understanding and resulting in object mixing. In this paper, we introduce Detector Guidance (DG), which integrates a latent object detection model to separate different objects during the generation process. DG first performs latent object detection on cross-attention maps (CAMs) to obtain object information. Based on this information, DG then masks conflicting prompts and enhances related prompts by manipulating the following CAMs. We evaluate the effectiveness of DG using Stable Diffusion on COCO, CC, and a novel multi-related object benchmark, MRO. Human evaluations demonstrate that DG provides an 8-22\% advantage in preventing the amalgamation of conflicting concepts and ensuring that each object possesses its unique region without any human involvement and additional iterations. Our implementation is available at \url{https://github.com/luping-liu/Detector-Guidance}

    A Tutorial on Coding Methods for DNA-based Molecular Communications and Storage

    Full text link
    Exponential increase of data has motivated advances of data storage technologies. As a promising storage media, DeoxyriboNucleic Acid (DNA) storage provides a much higher data density and superior durability, compared with state-of-the-art media. In this paper, we provide a tutorial on DNA storage and its role in molecular communications. Firstly, we introduce fundamentals of DNA-based molecular communications and storage (MCS), discussing the basic process of performing DNA storage in MCS. Furthermore, we provide tutorials on how conventional coding schemes that are used in wireless communications can be applied to DNA-based MCS, along with numerical results. Finally, promising research directions on DNA-based data storage in molecular communications are introduced and discussed in this paper

    Orthogonal-Time-Frequency-Space Signal Design for Integrated Data and Energy Transfer: Benefits from Doppler Offsets

    Get PDF
    Integrated data and energy transfer (IDET) is an advanced technology for enabling energy sustainability for massively deployed low-power electronic consumption components. However, the existing work of IDET using the orthogonal-frequency-division-multiplexing (OFDM) waveforms is designed for static scenarios, which would be severely affected by the destructive Doppler offset in high-mobility scenarios. Therefore, we proposed an IDET system based on orthogonal-time-frequency-space (OTFS) waveforms with the imperfect channel assumption, which is capable of counteracting the Doppler offset in high-mobility scenarios. At the transmitter, the OTFS-IDET system superimposes the random data signals and deterministic energy signals in the delay-Doppler (DD) domain with optimally designed amplitudes. The receiver optimally splits the received signal in the power domain for achieving the best IDET performance. After formulating a non-convex optimisation problem, it is transformed into a geometric programming (GP) problem through inequality relaxations to obtain the optimal solution. The simulation demonstrates that a higher amount of energy can be harvested when employing our proposed OTFS-IDET waveforms than the conventional OFDM-IDET ones in high mobility scenarios

    Green Beamforming Design for Integrated Sensing and Communication Systems: A Practical Approach Using Beam-Matching Error Metrics

    Get PDF
    In this paper, we propose a green beamforming design for the integrated sensing and communication (ISAC) system, using beam-matching error to assess radar performance. The beam-matching error metric, which considers the mean square error between the desired and designed beam patterns, provides a more practical evaluation approach. To tackle the non-convex challenge inherent in beamforming design, we apply semidefinite relaxation (SDR) to address the rank-one relaxation issue, followed by the iterative rank minimisation algorithm (IRM) for rank-one recovery. The simulation results showcase the effectiveness of our proposed optimal beamforming design, emphasizing the exceptional performance of the radar component in sensing tasks
    • …
    corecore